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1 INTRODUCTION 

During the rapid urbanization process, cities are facing numerous challenges in meeting the needs of their growing 

populations, especially in the transportation system. Fortunately, urban computing methods [28] can help us tackle 

these issues by using the large amount of data generated in cities. Obviously, being aware of the city-wide traffic 

volume, i.e. the number of vehicles traversing on every road segment, is the first step to solve the urban transportation 

problems. It can bring great convenience to the residents by helping them avoid congested roads. In addition, the 

traffic volume information is also very important for the government in city planning, such as detecting bottle-neck 

roads, intervening on congestions, and estimating vehicles’ pollution emissions. 

Existing volume monitoring methods use loop detectors, surveil- lance cameras or taxi trajectory data, but they all fail 

to provide a city-wide volume estimation. Specifically, loop detectors (certain sensors buried under the pavements) 

and surveillance cameras are expensive and thus difficult to be scaled up to cover the whole city area. As for the taxi 

trajectories, their occurrence on the streets is only a biased sample of the entire traffic volume, because their operating 

time and behaviors are quite different from the general population. 

In this work, we propose to infer the city-wide volume information with both loop detector and taxi trajectory data. 

By making the best use of both data sets, we can achieve a better volume estimation on a city scale. However, this is a 

nontrivial problem faced with great challenges. Firstly, although loop detectors can provide accurate volume 

information, the data collected is very sparse and incomplete because very few roads are affordable to be equipped 

with loop detectors. In order to infer the volume information for those road segments without loop detectors, we can 

first construct an affinity graph to characterize the similarities among roads, then propagate the knowledge of the road 

segments with loop detector to other segments. However, constructing the affinity graph is also a difficult task, 

because we do not possess the knowledge of road similarities with respect to volume values. To solve this problem, 

we first infer the city-wide travel speed from the taxi trajectory data, and learn the daily speed patterns for each road 

segment. Based on our observations in the real world data, the speed patterns co- evolve with volume patterns, and 

nearby roads with similar speed patterns are likely to follow similar volume patterns. This allows us to learn the 

similarity among road segments with respect to the speed pattern, then utilize it to form the spatial affinity graph. In 

addition to the spatial domains, we also build connections among recent and  periodical time slots in the affinity graph. 

With the learned affinity graph, we design a graph-based semi-supervised learning method which captures the spatio-

temporal properties of traffic volume, thus achieving a city-wide volume estimation. Furthermore, we propose 

practical confidence measurements with spatio-temporal smoothness property and graph-structure property. These 

measurements will provide end users a better interpretation on the inference results. 

In summary, we propose a novel framework to infer the city-wide volume information with both loop detector and 

taxi trajectory data. The contributions are summarized as follows. 

 

 We propose a spatio-temporal semi-supervised learning model to tackle the data sparsity problem associated 

with loop detectors and taxi trajectories. Daily speed patterns are learned from taxi trajectories, and it is utilized to 

construct the affinity graph among roads. As a result, the knowledge from two different domains are fused in this 

framework to infer a city-wide volume information. 

 We propose practical confidence estimation measurements with the spatio-temporal smoothness property and 

graph-structure property. 

 We conduct extensive experiments on real-world data which was collected with 155 loop detectors and 6,918 

taxis over a period of 17 days. The results demonstrate the advantages of the proposed framework on correctly 

inferring the city-wide traffic volume. 

 

The rest of the paper is organized as follows. We describe the overview of the framework in Section 2. Components 

of the frame- work are detailed in Section 3, and experiments are shown in Section 4. We review the related work in 

Section 5 then conclude the paper in Section 6. 

2 OVERVIEW 

In this section, we first introduce several preliminary concepts that will be used throughout the work, formally define the 

problem that we aim to solve, then describe the proposed framework in Figure 1. 
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Figure 1: Proposed Framework 

2.1 Preliminary 

Definition 2.1. Traffic Volume of a road segment is the total number of vehicles traversing through it during a fixed 

time window. 

The total traffic volume of each road is determined by two factors, the number of lanes and the average volume on 

each lane. In this paper, we aim to infer the per-lane volume for road segments, then the corresponding total traffic 

volume can be easily derived by multiplying with the number of lanes. 

Definition 2.2. Loop Detectors, or “inductive-loop traffic detectors”, are sensors buried under the pavements. They 

can detect vehicles passing or arriving at a certain point, thus the traffic volume information can be derived by 

aggregating the loop detector’s readings over a certain time window. 

Note that, although loop detectors can generate accurate volume information, they are so expensive that the 

government can implement only on a small number of road segments. For example, only 155 road segments are 

equipped with loop detectors, while there are totally 19165 road segments in the urban area of Guiyang. This is far 

from sufficient in terms of acquiring the city-wide volume information. 

Definition 2.3. Trajectory (Tr) of a taxicab is a sequence of time- ordered spatial points, Tr : p1 → p2 → · · · → pn 

where each point p has a geo-spatial coordination set l and a time stamp t , i.e., p = (l, t ). 

Definition 2.4. Point of Interest (POI ) is a specific location that someone may find useful. In this work, they represent 

venues in the physical world, e.g., banks and shopping malls. Each POI is associated with properties such as name, 

address, coordinates, category and etc. 

Definition 2.5. Road Network is a graph-based data structure where road segments are connected to each other. Each 

road segment is represented as a directed edge with two terminal points. 

2.2 Problem Formulation 

Given the loop detector data collected from a small portion of roads, the taxi trajectory data, and urban context data 

sets (i.e., point of interests, road network, and weather conditions), the Objective is to estimate the traffic volume of 

any road within the city area at any time slot. 

2.3 Framework Overview 

Figure 1 presents the proposed framework. The major components are: city-wide travel speed estimation, volume 

affinity graph construction, affinity graph edge weight learning, Spatio-Temporal Semi-Supervised Learning (ST-SSL) 

and inference confidence estimation. The details of each component will be elaborated in the Section 3. 

Briefly speaking, we first map the GPS trajectories onto a road network with map matching algorithm [14], and infer 

the average travel speed on all road segments with travel speed estimation method [21]. Then daily speed patterns of 

each road are learned, and the volume affinity graph can be constructed with those pat- terns together with features 

extracted from POI and road network. Once we construct the affinity graph and learn the edge weights, the proposed 
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spatio-temporal semi-supervised learning algorithm is performed to infer the city-wide traffic volume for each road 

segment. Finally, in order to provide a better interpretation on the inference results, we provide confidence estimation 

measurements with spatio-temporal smoothness and graph-structure properties. 

In the following section, we will detail every component of the proposed framework and demonstrate the reasons 

behind our design. 

3 METHODOLOGY 

3.1 City-wide Travel Speed Estimation 

The taxi trajectories by themselves cannot generate the city-wide traffic volume information directly. Although their 

occurrences on the road surface can be recognized as a sample of the total volume, it is only a very small and biased 

sample. The reason is obvious, their operating time and behaviors are quite different from the general population. 

Fortunately, we can derive a city-wide travel speed on each road segment from the trajectories with existing methods, 

and the travel speed is a good factor that correlates with the volume. 

In our framework, GPS coordinates are mapped onto the road network with map matching method [14] and the 

average travel speed of roads covered by the trajectory can be calculated. However, the taxis can only cover limited 

road segments for any given time period. In order to estimate the travel speed on all road segments, we perform a 

city-wide travel speed estimation method [21] with the context based collaborative filtering. By this means, we can 

derive an accurate estimation of the travel speed on each road segment of the urban area. 

 

3.2 Urban Context and Speed Pattern Extraction 

Many urban context information has correlations or impacts on the traffic volume, thus can help us with the inference 

task. For example, POIs reveal the functionalities of an area, and obviously a shopping mall would attract more visits 

than other places. Similarly, properties of road networks and weather condition also affect the traffic volume. 

With the collected data, we can extract three sets of urban features: geographic features of road segments, speed 

pattern features, and weather features. 

Geographic features of a road segment. For each road segment, we can extract features from the road network and 

the nearby POI data. 

 Road network features: Road length, level, direction, number of lanes, speed constraint, number of 

connections and tortuosity., the ratio between road length and Euclidean distance between the two terminals). 

 POI features: For any given road segment, within a distance of 200 meters around its two terminals, we can 

calculate the distribution of POIs across ten categories. These categories are: Schools, Companies and Offices, Banks 

and ATMs, Malls and Shopping, Restaurants, Gas stations and Vehicle, Scenic spot, Hotels and Residences, 

Transportations, Entertainments and Living. 

Speed pattern features. For each road segment, we can derive two features from its speed pattern: 

 Daily speed pattern. Given the historical record of travel speed on each road segment, we can derive a daily 

speed pattern by averaging it by day. 

 Daily average speed. Calculated by further average over the daily speed pattern. 

The speed pattern features play important roles when inferring the traffic volume. Although we have many urban 

features extracted, unfortunately, none of them has direct relationship with the volume value of a road segment. 

However, the speed patterns usually co- evolve with the volume patterns, and this means that roads with similar 

average speed and speed patterns are more likely to follow similar volume patterns. Several typical speed patterns are 

shown in Figure 2 together with their volume patterns. As a result, the speed patterns can help us determine the 

similarities among roads with respect to the volume. More specifically, the Pearson coefficient between any two 

series of daily speed patterns can measure the similarity between these two roads under this context. 
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Figure 2: Typical Speed and Volume Patterns 

Weather features. For any given time slot, we can collect the weather features from monitoring stations, such as 

temperature, humidity, weather conditions (categorized as cloudy, foggy, rainy, sunny and snowy) and etc. Among 

these, the weather conditions have the most direct impact on the traffic volume. One obvious example is that volume 

patterns would be similar on days with extreme weather conditions, such as heavy snow or heavy rain. 

 

3.3 Volume Affinity Graph Construction 

The proposed ST-SSL model is a graph-based semi-supervised learning model. Its success depends on not only the 

model itself, but also the corresponding affinity graph. We first define the affinity graph in the following. 

 

Figure 3: Affinity Graph Structure 

Definition 3.1. Affinity Graph (Figure 3) is a multi-layer weighted graph where each layer denotes a time slot. Each 

node in the graph is the lane volume of a road segment , i.e. average volume per lane, on one specific time slot. There 

are edges connecting among the nodes, and their weights represent the correlations among the nodes. Edges within 

the same time slot are “spatial” correlations and those between different time slots are “temporal” correlations. The 

node set V = L ∪ U , where L is the set of nodes whose volume are known (or “Labelled”), in other words, those road 

segments with loop detectors. U is the set of nodes whose volume are not known (or “Unlabellded”). 

Spatial and temporal knowledge play important roles in the construction of the affinity graph. By connecting nodes 

with deliberately designed spatio-temporal rules, we encode those prior knowledge into the affinity graph. 

Spatial Affinity Graph. Within each time slot, the construction of the spatial affinity graph consists of the following 

parts: 

 Edge between nearby road segments. Common sense tells us that road segments in nearby areas are likely to 

have similar traffic conditions. Based on this observation, for each road segment, we select its nearby roads (e.g., 

within 300 meters) as candidates. However, a road segment may have too many nearby neighbors. As shown in 
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Figure 4, there are quite a few roads with more than 50 neighbors. Then it is not reasonable to assume that all these 

nearby roads have similar lane volume. In order to deal with this problem, we further filter the candidates with road 

segments’ daily speed patterns. Specifically, we filter several (e.g., 20) road segments from the candidate set with the 

most similar daily average speed, then further filter a small set (e.g., 10) with the similar daily speed patterns. By this 

means, we connect road segments that share the similar traffic patterns. 

 

Figure 4: Number of Neighbors Histogram 

 Edge between reachable road segments. Some road segments are relatively long, and the previous rule may 

only extract too few neighbors. However, road segments within several hops (e.g., 2 or 3 hops) are likely to share 

similar volume. Based on this idea, we extract nodes within several hops as candidates, then filter the candidate set by 

their speed patterns as described above. 

 Edge to similar road segments with loop detectors. The loop detectors provide very reliable volume readings. 

In order to make the best use of these data, we build edges between a road segment and a few others that equip loop 

detectors with similar traffic patterns. This is also achieved by filtering the daily speed patterns. 

 

Temporal Affinity Graph. For nodes on different temporal layers, the construction of edges consists of the following 

parts: 

 Edge between recent layers. Obviously, the volume values would not change dramatically in a relatively short 

time period. The idea here is to build edges between nodes in nearby temporal neighbors, for example, within 30 

minutes. 

 Edge between periodical temporal layers. For each road segment, the volume follows a regular pattern every day, 

every week, and even every season. Figure 5 shows the volume value of a road during a 10-day interval. The daily 

and weekly periodical pattern can be easily depicted. Based on this observation, we connect road segments with all of 

their periodical neighbors. 

 Edge between layers with extreme weather conditions. The traffic volume would follow similar patterns when 

encountered with extreme weather conditions, such as heavy snow and heavy rain. As a result, we build edges among 

temporal layers under similar extreme weather conditions. 

 
Figure 5: Periodical Volume Pattern 

Graph Edge Weight Learning. After constructing the affinity graph, we should learn the edge weights in the graph 

which rep- resents the volume similarity among nodes. The basic idea is that two nodes should have similar lane 

volume patterns if they share similar urban features, and vice versa. However, urban features may have different 

correlations with the volume patterns which can be learned from the data. Specifically, the spatial edge weights are 

calculated in the following process: 

 Step 1: Normalize the feature values fi for all features i. This is achieved by feature standardization which 
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makes the values of each feature in the data have zero-mean and unit-variance, i.e., 

𝑓𝑖 ≔
𝑓𝑖−𝑚𝑒𝑎𝑛(𝑓𝑖)

𝑠𝑡𝑑(𝑓𝑖)
  

 Step 2: For each feature i, calculate the Pearson correlation corrfi between the feature value differences |∆ fi | 

and lane volume value differences |∆x |. Specifically, for any two roads u and v with loop detector readings on the 

same temporal layer, the lane volume value difference is |∆xu,v | = |xu − xv |, and the feature value differ- ence is |∆ fi 

(u, v)| = | fi (u) − fi (v)|. Then with all the loop detector data, we can calculate the Pearson correlation denoted by 

corrfi . In other words, corrfi measures the impact of different features on the volume values. 

 Step 3: Calculate spatial edge weight au,v  between any two roads u and v as follows: 

𝑎𝑢,𝑣 = exp(−∑𝑐𝑜𝑟𝑟𝑓𝑖
𝑖

× |𝑓𝑖(𝑢) − 𝑓𝑖(𝑣)|) 

In addition, it is easy to be noticed that nodes in temporal neighbors should have similar lane volume. Thus, we set the 

temporal edge weights as 1. 

 

3.4 Spatio-Temporal Semi-Supervised Learning 

Based on the constructed volume affinity graph and the learned edge weights, we propose a graph-based semi-

supervised learning model(ST-SSL) which incorporates the knowledge of spatio-temporal volume patterns. Generally 

speaking, there are several advantages of the proposed method. First, the ST-SSL model can make good use of the 

observed volume information by loop detectors, and infer all missing volume values in the graph. Second, ST-SSL 

assures that nodes with similar feature values should have similar lane volume values, which is achieved by learning 

the edge weights. Third, ST- SSL follows the spatio-temporal prior knowledge which makes it behave under physical 

constraints. 

         The first rule that we take into consideration is the change rate similarity of spatial neighbors. Assume that there 

are totally T temporal layers in the graph, and xu(t) denotes the lane volume of road u on time slot t . The 

corresponding loss function is  

ℒ𝑠 =∑ ∑ 𝑎𝑢,𝑣
(𝑢,𝑣)∈𝐸𝑡∈𝑇

(
△ 𝑥𝑢(𝑡)

𝑥𝑢(𝑡 − 1)
−

△ 𝑥𝑣(𝑡)

𝑥𝑣(𝑡 − 1)
)

2

, 

where ∆x (t ) = x (t )−x (t −1). This rule captures the fact that volume of the correlated roads usually has similar 

change rates over time. For example, during the morning rush hours, many vehicles would take similar routes to work 

and it makes the volume around working areas increase at the same time. 

The second rule is that volume on consecutive and periodical time slots should be similar. Let corr(t) represents the 

set of correlated temporal layers with time t, and it contains recent and periodical layers. Then the corresponding loss 

function is  

ℒ𝑡 =∑ ∑ ∑(𝑥𝑢(𝑡) − 𝑥𝑢(𝑐))
2

𝑢∈𝑈𝑐∈𝑐𝑜𝑟𝑟(𝑡)𝑡∈𝑇

 

By putting the equations (2) and (3) together, we have the loss function of the proposed ST-SSL model 

ℒ𝑆𝑇𝑆𝑆𝐿 = ℒ𝑠 + ℒ𝑡 =∑ ∑ 𝑎𝑢,𝑣
(𝑢,𝑣)∈𝐸𝑡∈𝑇

(
△ 𝑥𝑢(𝑡)

𝑥𝑢(𝑡 − 1)
−

△ 𝑥𝑣(𝑡)

𝑥𝑣(𝑡 − 1)
)

2

+ 𝛼∑ ∑ ∑(𝑥𝑢(𝑡) − 𝑥𝑢(𝑐))
2

𝑢∈𝑈𝑐∈𝑐𝑜𝑟𝑟(𝑡)𝑡∈𝑇

 

where α is a hyper-parameter which gives different emphases on the two terms. Then our goal is to find the lane 

volume for all roads X = {xu |u ∈ V}, such that the loss function (4) is minimized 

𝑋 = argmin
𝑋

ℒ𝑆𝑇𝑆𝑆𝐿 

In order to solve the above problem, we adopt an iterative update algorithm. By taking the  partial  derivative  of  

ℒ𝑆𝑇𝑆𝑆𝐿to xv (t ) and let it be zero, we get 
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𝑥𝑣(𝑡) =
∑

𝑎𝑢,𝑣𝑥𝑢(𝑡)
𝑥𝑢(𝑡)𝑥𝑣(𝑡 − 1)𝑢∈𝑁(𝑣) + 𝛼∑ 𝑥𝑣(𝑡 + 𝑐)𝑐∈𝑐𝑜𝑟𝑟(𝑡)

∑
𝑎𝑢,𝑣

𝑥𝑣
2(𝑡 − 1)𝑢∈𝑁(𝑣) + 𝛼𝐶

 

where N (v) represents the set of nodes that are connected with v, and C = |corr(t)| is the number of correlated 

temporal layers with time t. 

By carefully examining the equation (6), we can observe that it successfully captures the spatio-temporal properties of 

the traffic volume. Specifically, the volume of one road segment is correlated with its spatial neighbors because they 

have similar volume change rates, as shown by the first term of the nominator. In addition, it also correlates with its 

temporal neighbors because it changes smoothly over time, as shown by the second term of the nominator. Overall, 

the inference of traffic volume is a weighted average over spatial and temporal components. 

 

3.5 Inference Confidence Estimation 

The inference confidence is a vital problem that haunts many learning methods, especially for semi-supervised 

algorithms. Tradition- ally, for the purpose of evaluation, we can divide the labelled data into training and evaluation 

sets, but this would further reduce the amount of data for inference. In this section, we propose to use the property of 

spatio-temporal smoothness and graph structure to determine the confidence of the inference results. Because of their 

generality, these measurements can also be applied to other spatio-temporal and/or graph-based models. 

Spatio-temporal Smoothness Confidence. In many real world ap- plications, the target variables would not change 

dramatically over both temporal and spatial dimensions. For example, the temperature usually changes gradually over 

time and geo-space. With respect to the traffic volume, Figure 6 shows that it tends to have similar values in recent 

time slot and locations. Specifically, Figure 6(a) presents the volume differences as time goes on. It is obvious that the 

volume values on recent and periodical time slots are more similar; Figure 6(b) demonstrates the volume ratio with 

different spatial distances. This shows that nearby roads should have similar lane volume values. 
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Figure 6: Spatio-temporal smoothness of volume 

With the above observations, we define a confidence metric on the spatio-temporal smoothness as follows: 

Definition 3.2. Spatio-temporal Smoothness Confidence (CST). For any given node v in the affinity graph G, we 

assume the value of its correlated nodes follows a normal distribution N (µ, σ 2), where µ and σ can be estimated 

accordingly. Then the spatio-temporal smoothness confidence of the node v is defined as 

𝐶𝑆𝑇 = {
𝑃(𝑥 < 𝑥𝑣 ∩ 𝑥 > 2𝜇 − 𝑥𝑣) = 2𝐶𝐷𝐹(𝑥𝑣),𝑥𝑣 < 𝜇

𝑃(𝑥 > 𝑥𝑣 ∩ 𝑥 < 𝑥𝑣 − 2𝜇) = 2(1 − 𝐶𝐷𝐹(𝑥𝑣)),𝑥𝑣 < 𝜇
 

 

Graph Structure Confidence. In graph-based semi-supervised learning methods, the knowledge of labelled data is 

propagated through the affinity graph. However, some unlabelled nodes might be connected to labelled nodes directly 

or with larger edge weights, and some others may connect to labelled nodes remotely or with smaller edge weights. 

Following this path, we define a graph structure based confidence measurement. The basic idea is that nodes 

connected to labelled data with higher weights should receive more confidence, and vice versa. 

Definition 3.3. Graph structure confidence (CG). For any given node v in the affinity graph G, we calculate the edge 

weights be- tween v and its connected nodes with volume labels. Then we take the maximum weight as the graph 

structure confidence. 

Moreover, a typical method of aggregating these two measurements is using F-measure as follows 

𝐹𝛽 = (1 + 𝛽2) ∙
𝐶𝑆𝑇 ∙ 𝐶𝐺

𝛽2 ∙ 𝐶𝑆𝑇 + 𝐶𝐺
 

where we can assign different weights on these measurements with parameter β. 

 

The proposed framework is evaluated with a real-world data and its practical usage is demonstrated. In the following, 

we introduce the data sets, the baselines, and the performance measurements for the volume inference. Then the 

results are shown and discussed. 

 

4 EXPERIMENT 

4.1 Data Set 

All the data is collected in Guiyang, a south-west city of China. There are totally 155 road segments deployed with 

loop detectors, and Figure 7(a) shows their locations in the road network. These loop detectors generate timely 

readings about vehicles passing by, and we aggregate them into traffic volume values for every 20 minutes. We also 

collect real-time GPS readings of 6,918 taxicabs. Figure 7(b) shows the heatmap of taxi appearances on the road 

where the frequency decreases from color red to green. Both the loop detector data and taxi trajectories are collected 

during the period of March 16 to April 1, 2016. 

We also collected road network and POI data in Guiyang, and there are totally 19,165 road segments in the road 

network. The corresponding features are extracted as described in the Section 3.2. 
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Figure 7: Loop Detectors and Taxi Trajectories 

4.2 Baselines 

In this experiment, we compared the proposed ST-SSL algorithm with several supervised and semi-supervised methods. 

 Linear regression (LR). A linear regression model is trained with all the extracted features. 

 Artificial neural network (ANN ). We train an multi-layer perceptron using back propagation with no activation 

function in the output layer. 

 Random forest regression (RF ). A random forest is a meta estimator that fits a number of classifying decision 

trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. 

Basic semi-supervised learning model [30] (Basic-SSL). This is a classical semi-supervised learning model, and its loss 

function is ∑ 𝑎𝑢,𝑣𝑢,𝑣 (𝑥𝑢 − 𝑥𝑣)
2. Compared with the proposed model, this baseline does not consider the spatio-temporal 

patterns. 

4.3 Performance Measurements 

Because volume values varies a lot on different roads, the absolute values of Mean Square Error and Mean Absolute Error 

are not reasonable measurements for the inference performance. This is because the final errors will be biased towards roads 

with higher volume values, and this is unfair for many roads that only have relatively low volume. In order to avoid the 

aforementioned bias, we use the following metrics to judge the performance of each method: 

 MSPE: Root Mean Square Percentage Errors. For each road, the percentage volume error is defined as its error 

divided by the ground truth value. This measures how much errors are made compared with the ground truths. Then for all 

the roads in evaluation data set, we calculate the root of the mean squared relative errors as the MSPE. 

 VarMSPE : Variance of the MSPE. For each method, we ran the experiment several times, and the variance of 

their MSPE represents the robust of the corresponding method. 

 MAPE: Mean Absolute Percentage Errors. Similarly, it measures the overall absolute relative errors between each 

method’s outputs and the ground truths. This is calculated by averaging the absolute difference of relative errors. 

 VarMAPE : Variance of the MAPE. For each method, we ran the experiment several times, and the variance of 

their MAPE represents the robust of the corresponding method. 

4.4 Evaluation Results 

In the following, we perform extensive experiments on the proposed method, and demonstrate its advantages with the results. 

Inference Accuracy. To compare the performance of all the methods on the volume inference accuracy, we conduct 

experiments on the urban data set in Guiyang. In this experiment, 80% of all the volume data collected from loop detectors 

are treated as training data, and the rest is used for testing. 
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In real-world applications, loop detectors may malfunction occasionally and those readings will be discarded. This results in 

missing values at some time slots, and poses more challenge on the volume inference task. For the rest of this section, we 

refer “undetected road inference” as the problem of inferring the volume of roads without loop detectors, and “missing 

observation recovery” as the problem of inferring the missing volume of roads with loop detectors. In order to test the 

performance on both of the two volume inference tasks, we simulate the scenarios as follows. In the former task, we 

randomly select the volume records from all roads with 80% percentage as the training data; while for the later task, we 

randomly select 80% roads and treat their readings as the training data, and test on the remaining 20% roads. The results are 

shown in Table 1. It clearly shows the better performance of ST-SSL in both tasks compared with all the baselines. As can 

be expected, the inference accuracy on “missing observation recovery” is quite lower than that on task “undetected road 

inference”. Because it is easier to infer the volume value of a road if we have some historical observations, and vice versa. 

In addition, the proposed method has great robust since the variance of MSPE and MAPE are always near to 0. 

Table 1: Volume Inference Accuracy 

 

Vary the number of spatial neighbors The performance of graph-based semi-supervised models is affected by the graph 

structure. In this experiment, we vary the number of spatial neighbors of each node in the affinity graph, and see how it 

affects the volume inference. From Table 2, we can see that ST-SSL performs similarly with different number of neighbors. 

The reason is two-folded. On one hand, the edge weights of our affinity graph are learned intelligently. This means that even 

though we build many edges among the nodes, they can distinguish the importance of the correlations wisely with the 

learned edge weights. On the other hand, the pro- posed ST-SSL method incorporates spatio-temporal patterns in the model, 

and this helps to achieve a good volume inference. In comparison, although Basic-SSL performs worse than the proposed 

method, the performance of Basic-SSL gets better when the graph has more spatial neighbors in the affinity graph. This 

proves that the proposed Spatio-temporal semi-supervised learning requires less information passed through the graph, 

because it genuinely incorporates those prior knowledge. 

Table 2: Performance Varying # Spatial Neighbors 

 

Vary the spatio-temporal factor α. In equation (4), hyper- parameter α is a factor that gives different weights on the spatial 

and temporal terms. More emphasis will be put onto the temporal term with a larger α , and vice versa. In fact, this factor is 

application dependent because the two terms in equation (4) are not normalized. In order to evaluate the effect of α on the 

inference errors, we perform experiments with different α and the results are shown in the Figure 8. As depicted from the 

figure, the inference error can reach reasonably low when the α is within a certain range, i.e., around 1 in this case. However, 

both larger or smaller values have negative effects on the inference results. 

Table 3: Performance Varying Training:Testing 
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Figure 8: Vary Spatio-temporal Factor α 

Vary the data size. We also conduct experiment with different amount of data. The data size is varied from 6 hours to 15 

days, and the inference accuracies of all methods are aggregated in Table 4. Obviously, the propose method ST-SSL 

performs consistently well over baselines under all the settings. This means that no matter how much data we have, ST-SSL 

can give quite accurate estimations on the volume information. On the contrary, supervised learning based models cannot 

provide meaningful estimations. This is be- cause the urban features only correlate with the traffic volume in a very obscure 

way, such that baselines cannot learn meaningful relationships between those features and the traffic volume. 

Table 4: Performance (MSPE) w.r.t. Varying Data Size 

 

Vary the ratio of training and testing data. The results are shown in Table 3. Similar with what we have discussed, ST-

SSL performs quite well even with very few collected volume data. In addition, although supervised methods perform better 

when given more training data, they still cannot catch up with the proposed method. 

Visualization of Inference Confidence In Figure 9, we display the confidence on a map for the end users. Each mark 

represents the confidence level of a road segment. Levels of confidence are represented with different colors (green 

represents the most confident and red represents the least confident). In addition, users can zoom in and out to see the details. 
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Figure 9: Visualization of Inference Confidence 

Convergence. The proposed method converges quickly after only a few iterations which is shown in Figure 10. This 

demonstrates the efficiency of the proposed method. 

 

5 RELATED WORK 

5.1 Traffic Condition Inference 

Loop detectors [11, 15, 18, 22] and surveillance cameras [20, 23] are traditional equipments in traffic condition monitoring. 

On the bright side, the volume of a road can be directly extracted from these devices. They are mainly used to predict the 

future volume of a road segment with filtering-based models [18, 22] or time series models [13]. However, the data sparsity 

problem is critical and it is hard to infer the volume of a city-wide area, because they are too expensive to deploy across the 

whole city. Fundamental diagram [4–6, 8, 15, 25] characterizes the relationship among traffic density, speed and volume. 

But this approach requires great amount of training data to learn the relationships, which is unrealistic for our problem. 

Moreover, there is a unique relationship for each road, such that it makes the city-wide estimation infeasible. In recent 

researches, more attentions have been put onto the traffic condition estimation with floating car data [9, 10, 19, 21, 24, 26, 

27, 32], where vehicles are equipped with GPS sensors and collect geo-spatial coordinates on the move. After mapping the 

trajectories onto the road network, it is easy to derive the average travel speed [21, 26] on some of the road segments. 

However, infer the traffic volume with floating car data is nontrivial, because the cars are only a small and biased sample of 

the total traffic volume (e.g. taxi trajectories). In [19], the authors first estimate the travel speed on each road, then adopt an 

unsupervised Bayesian model to learn the volume. However, it is hard to learn a universal model for all the road segments 

with handcrafted Bayesian network. [1] explored the possibility of learning a regression model with floating cars’ 

occurrence, but it still cannot solve the sparsity problem. In addition, this work also proved that the floating cars are biased 

sample because the taxi distribution usually under-estimates the volume on rush hours and over-estimates otherwise. 

Compared with the existing work, the proposed framework in this paper handles both the floating car data and loop detector 

data wisely, and can derive city-wide volume information with more accuracy. 

 

5.2 Semi-supervised  Learning 

Supervised learning models use “labelled” data to build a model, then apply on the unlabelled data for inference. However, 

acquiring enough labelled data in real-world applications is quite difficult, sometimes impossible. Semi-supervised learning 

(SSL) models [31] addresses this problem by exploiting unlabelled data to help with the learning performance. There have 

been extensive research on this field, and many models are proposed. Generative models [16, 17] usually treat the class 

labels of the unlabelled data as missing values and employ the EM algorithm to conduct maximum likelihood estimation; 

Low-density separation models [7] use a maximum margin algorithm, such as support vector machines, to push the decision 

boundary away from the unlabelled points. Graph- based models are learned to find the minimum cut of the graph for the 

classification tasks [2, 3], and to propagate the knowledge across the graph for the continuous prediction tasks [12, 29, 30]. 

In this paper, we adopt the graph-based semi-supervised model which is suitable for inferring the continuous values, and can 

propagate the volume knowledge collected by loop detector across the affinity graph. 
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6 CONCLUSIONS 

In this paper, we propose a framework to infer the city-wide traffic volume information with loop detectors and taxi 

trajectories. However, both of these data are incomplete, sparse, and from quite different domains. In order to solve these 

problems, we propose a spatio-temporal semi-supervised learning model to tackle the data sparsity problem associated with 

loop detectors. In addition, the knowledge from trajectories is also integrated by learning the traffic patterns and utilize it to 

construct the affinity graph. The experiment was conducted on real-world data and the results demonstrate advantages of the 

proposed framework on inferring the city-wide traffic volume. 
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